HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling

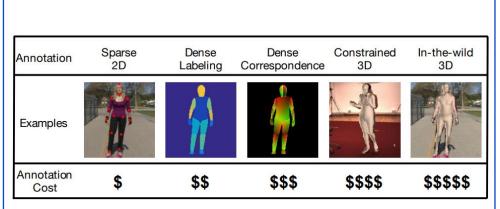
Zhongang Cai*, Daxuan Ren*, Ailing Zeng*, Zhengyu Lin*, Tao Yu*, Wenjia Wang*, Xiangyu Fan, Yang Gao, Yifan Yu, Liang Pan, Fangzhou Hong, Mingyuan Zhang, Chen Change Loy, Lei Yang, Ziwei Liu

Shanghai Al Laboratory, S-Lab, Nanyang Technological University, SenseTime Research, The Chinese University of Hong Kong, Tsinghua University

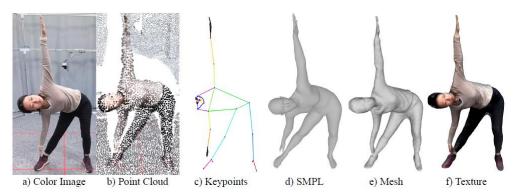
ECCV'22 Oral

Overview

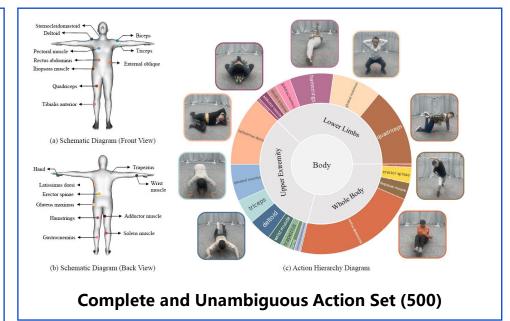
Background

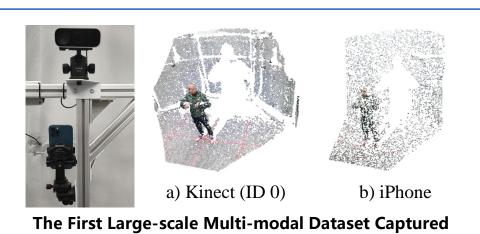


3D Human Data Is Expensive to Acquire



HuMMan





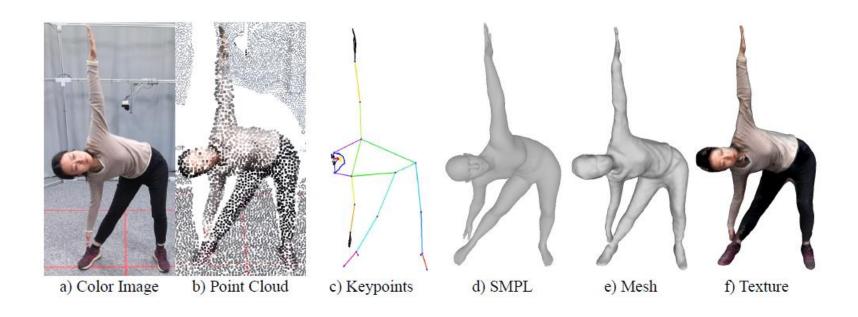
Dataset	#Subj #Act	#Sea	#Frame	Video Mobile	Modalities									
	// e a e j	,, -1-00	// 504	,,				D/PC	Act	K2D	K3D	Param	Mesh	Txt
UCF101 [85]	-	101	13k	-	✓	-	✓	_	✓	_	_	-	-	_
AVA [20]	-	80	437	-	\checkmark	-	✓	-	✓	-	-	-	-	-
FineGym [82]	-	530	32k	-	✓	-	✓	-	✓	-	-	-	-	-
HAA500 [14]	-	500	10k	591k	✓	-	✓	-	✓	-	-	-	-	-
SYSU 3DHÓI [26]	40	12	480	-	✓	-	✓	\checkmark	✓	-	✓	-	-	-
NTU RGB+D [81]	40	60	56k	-	\checkmark	-	✓	✓	✓	-	✓	-	-	-
NTU RGB+D 120 [54]	106	120	114k	-	✓	-	✓	\checkmark	✓	-	✓	-	-	-
NTU RGB+D X [91]	106	120	113k	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark	✓	-	-
MPII [3]	-	410	-	24k	-	-	✓	-	✓	✓	-	-	-	-
COCO [52]	-	-	-	104k	-	-	\checkmark	-	-	✓	-	-	-	-
PoseTrack [2]	-	-	> 1.35 k	>46 k	\checkmark	-	✓	-	-	✓	-	-	-	-
Human3.6M [28]	11	17	839	3.6M	\checkmark	-	\checkmark	\checkmark	✓	✓	✓	-	-	-
CMU Panoptic [34]	8	5	65	154M	\checkmark	-	\checkmark	\checkmark	-	✓	✓	-	-	-
MPI-INF-3DHP [63]	8	8	16	1.3M	✓	-	\checkmark	-	-	✓	\checkmark	-	-	-
3DPW [61]	7	-	60	51k	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-
AMASS [60]	344	-	>11k	>16.88M	✓	-	-	-	-	-	\checkmark	\checkmark	-	-
AIST++ [48]	30	-	1.40k	10.1M	✓	-	✓	-	-	✓	✓	✓	-	-
CAPE [59]	15	-	>600	>140 k	✓	_	_	-	✓	_	✓	✓	✓	_
BUFF [105]	6	3	> 30	> 13.6 k	\checkmark	-	\checkmark	✓	✓	-	✓	✓	✓	✓
DFAUST [6]	10	> 10	> 100	>40k	✓	-	\checkmark	\checkmark	✓	✓	✓	✓	✓	✓
HUMBI [101]	772	-	-	$\sim 26 \mathrm{M}$	✓	-	\checkmark	-	-	✓	✓	\checkmark	✓	\checkmark
ZJU LightStage [76]	6	6	9	>1k	✓	_	\checkmark	-	\checkmark	✓	✓	\checkmark	✓	✓
THuman2.0 [99]	200	-	-	>500	-	-	-	-	-	-	-	✓	✓	✓
HuMMan (ours)	1000	500	400k	60M	√	✓	√	√	√	√	√	√	√	√

The Largest-scale Multi-modal Dataset for Human Sensing and Modeling

with a Mobile Device

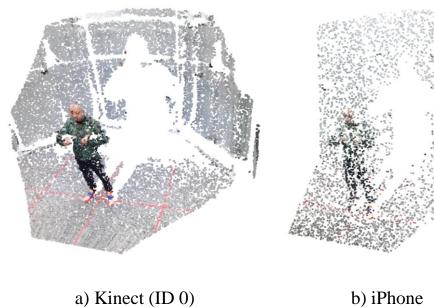
Scale

- ✓ Large-scale
 - √Subjects
 - ✓ Actions
 - ✓ Sequences
 - ✓ Frames
- ✓ Multi-modal
- ✓ Mobile device
- ✓ Multi-task

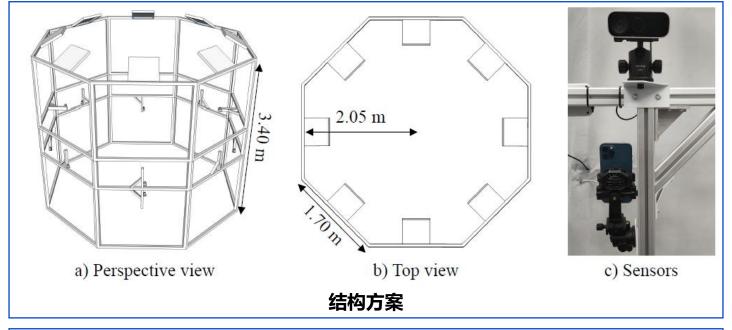

Datasat	// C1. :	ubj #Act #Seq #Fram		// E	37: 1	M-1:1-	Modalities							
Dataset	#SUDJ	#Act	#Seq	#Frame	video	Mobile		D/PC	Act	K2D	K3D	Param	Mesh	Txtr
UCF101 [85]	-	101	13k	_	✓	_	✓	_	√	_	-	_	-	_
AVA [20]	-	80	437	-	✓	_	✓	-	✓	_	-	-	-	_
FineGym [82]	-	530	32k	-	✓	-	\checkmark	-	\checkmark	-	-	-	-	-
HAA500 [14]	-	500	10k	591k	✓	-	✓	-	\checkmark	-	-	-	-	-
SYSU 3DHOI [26]	40	12	480	-	✓	-	✓	✓	✓	-	✓	-	-	-
NTU RGB+D [81]	40	60	56k	-	✓	-	✓	✓	✓	-	✓	-	-	-
NTU RGB+D 120 [54]	106	120	114k	-	✓	-	✓	✓	✓	-	\checkmark	-	-	-
NTU RGB+D X [91]	106	120	113k	-	✓	-	\checkmark	✓	✓	-	\checkmark	\checkmark	-	-
MPII [3]	-	410	-	24k	-	_	✓	-	✓	✓	_	-	_	_
COCO [52]	-	_	-	104k	-	_	✓	-	_	✓	-	-	-	_
PoseTrack [2]	-	-	> 1.35 k	>46k	✓	-	\checkmark	-	-	✓	-	-	-	-
Human3.6M [28]	11	17	839	3.6M	✓	-	\checkmark	✓	\checkmark	✓	✓	-	-	-
CMU Panoptic [34]	8	5	65	154M	✓	-	✓	✓	-	✓	✓	-	-	-
MPI-INF-3DHP [63]	8	8	16	1.3M	✓	-	✓	-	-	✓	✓	-	-	-
3DPW [61]	7	-	60	51k	✓	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-
AMASS [60]	344	-	>11k	> 16.88 M	✓	-	-	-	-	-	✓	\checkmark	-	-
AIST++ [48]	30	-	1.40k	10.1M	✓	-	✓	-	-	✓	\checkmark	✓	-	-
CAPE [59]	15	-	>600	>140k	✓	-	-	-	✓	_	✓	✓	✓	_
BUFF [105]	6	3	> 30	> 13.6 k	✓	-	✓	✓	✓	-	✓	✓	✓	✓
DFAUST [6]	10	> 10	> 100	>40k	✓	-	\checkmark	✓	\checkmark	✓	✓	✓	✓	✓
HUMBI [101]	772	-	-	$\sim 26 \mathrm{M}$	✓	-	✓	-	-	✓	\checkmark	\checkmark	✓	✓
ZJU LightStage [76]	6	6	9	>1k	✓	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
THuman2.0 [99]	200	-	-	> 500	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark
HuMMan (ours)	1000	500	400k	60M	✓	√	✓	√	√	√	√	✓	√	√

Modalities

- ✓ Large-scale
- ✓ Multi-modal
 - **✓** RGB
 - ✓ Depth/Point Cloud
 - ✓ Action Label
 - ✓ 2D Keypoints
 - √ 3D Keypoints
 - **✓** SMPL
 - ✓ Mesh
 - ✓ Texture
- ✓ Mobile device
- ✓ Multi-task

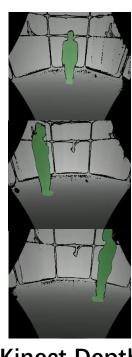

Mobile Device

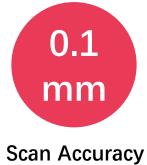
- ✓ Multiple Modalities
- ✓ Mobile Device
 - ✓ With Build-in LiDAR
- ✓ Action Set
- ✓ Multiple Tasks


Hardware

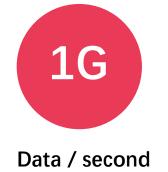
Hardware

Data Collection



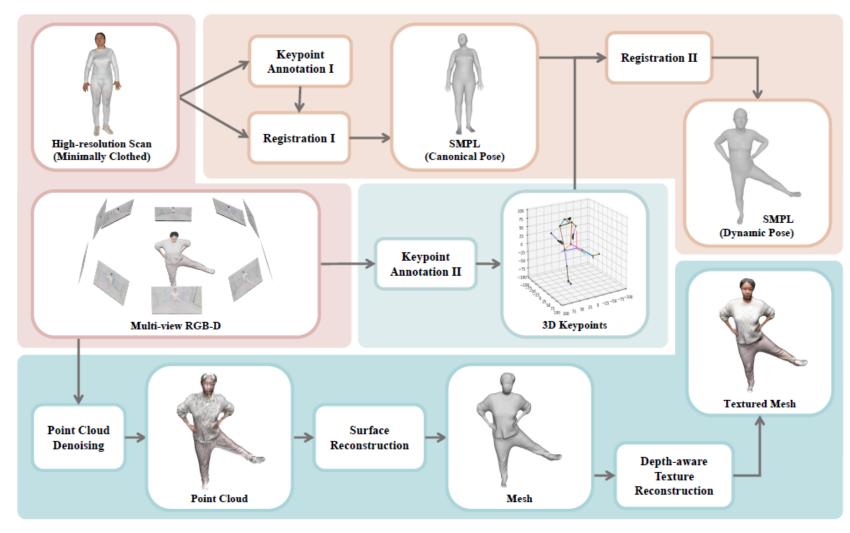

Artec Eva

iPhone RGB

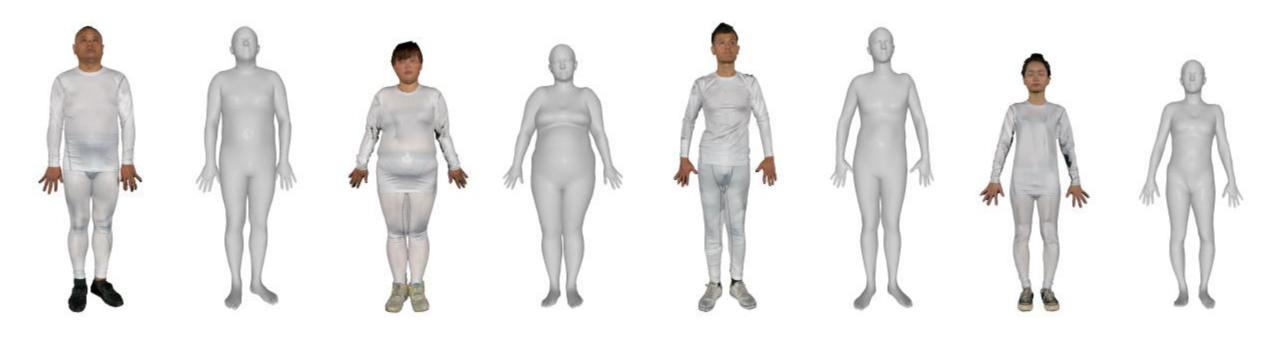

iPhone Depth

Kinect RGB

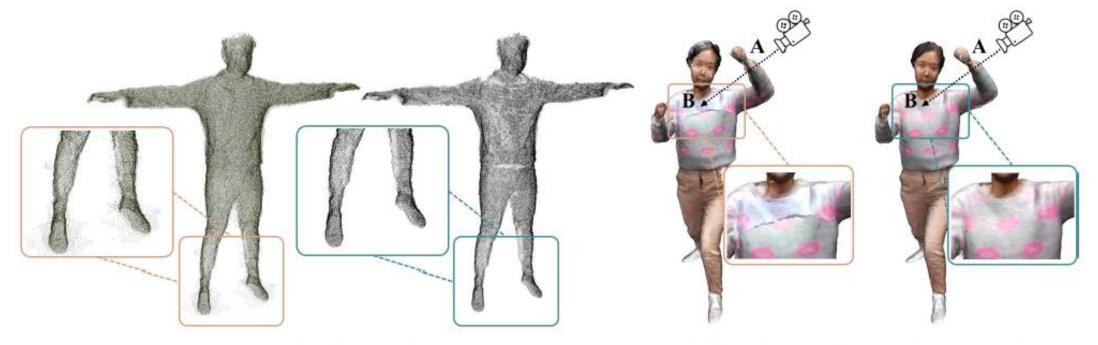
Kinect Depth


Toolchain

Toolchain

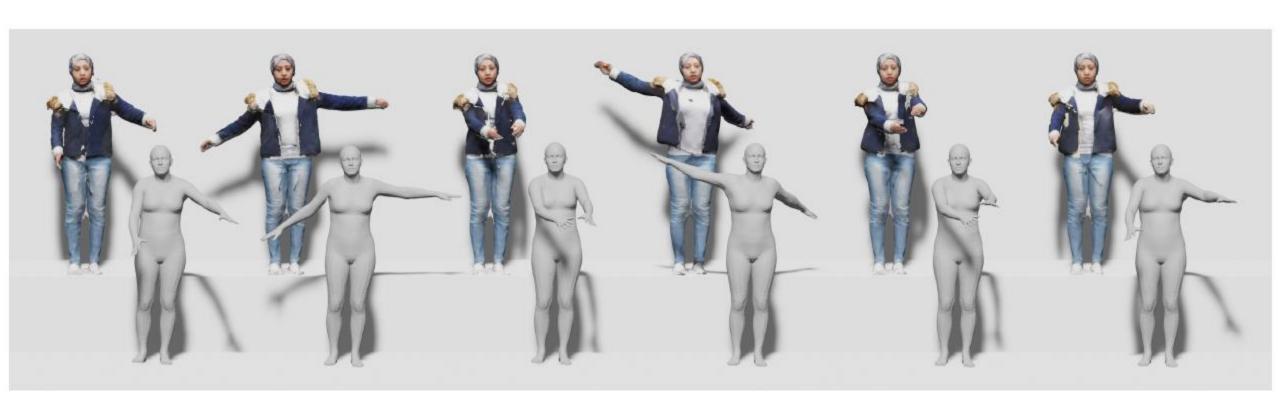

HuMMan

Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling


Registration on High-Resolution Scans

Textured Mesh Reconstruction

a) Point Cloud Denoising


b) Depth-aware Texture Reconstruction

Dynamic Parametric / Mesh Sequences

Textured Mesh and SMPL Sequences

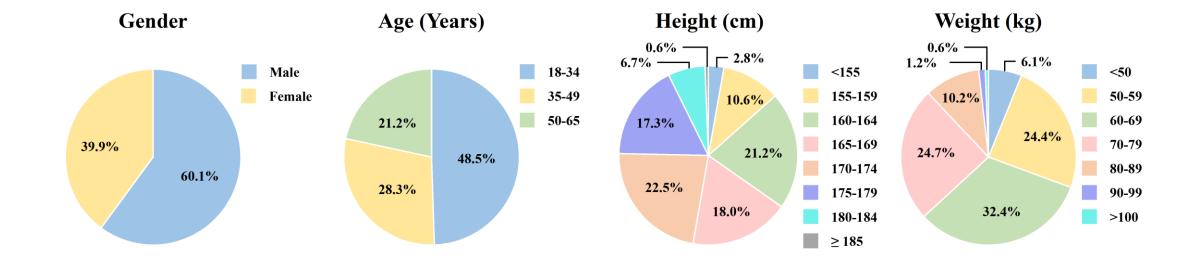
Action Set

Action Set

- Hierarchical
- Completeness
- Unambiguity

Subjects

Subjects


Varieties in Genders, Ages, Body Shapes (Heights, Weights), Ethnicity, and Clothing

Statistics

Experiments

Action Recognition

- Challenging action set
 - 2s-AGCN obtains Top-1 accuracy of 88.9% and 82.9% on NTU RGB-D 60/120
- Fine-grained actions
 - Large Top-1 vs Top-5 gap

Table 2: Action Recognition

Method	Top-1 (%) \uparrow	Top-5 (%) \uparrow
ST-GCN	72.5	94.3
2s-AGCN	74.1	95.4

- 3D keypoint estimation is challenging in HuMMan
- Model trained on HuMMan exhibits better transferability

Table 3: **3D Keypoint Detection**. PA: PA-MPJPE

Train	Test	$\mathrm{MPJPE}\downarrow$	$PA \downarrow$				
	FCN [62]						
HuMMan H36M	HuMMan AIST++	78.5 133.9	46.3 73.1				
HuMMan	AIST++	116.4	67.2				
Video3D [75]							
HuMMan H36M HuMMan	AIST++	73.1 128.5 109.2	43.5 72.0 63.5				

 Point cloud-based parametric human recovery is challenging

Table 4: **3D Parametric Human Recovery**. Image- and point cloud-based methods are evaluated

Method	MPJPE↓	PA-MPJPE ↓
HMR VoteHMR	54.78 144.99	36.14 106.32

Mobile Device

- Cross-device domain gap exists
- More severe in point cloud applications

Table 5: Mobile Device. The models are trained with different training sets, and evaluated on HuMMan iPhone test set. Kin.: Kinect training set. iPh.: iPhone training set. PA: PA-MPJPE

Method	Kin.	iPh.	MPJPE ↓	PA ↓
HMR	√	-	97.81	52.74
HMR	-	\checkmark	72.62	41.86
VoteHMR	\checkmark	-	255.71	162.00
VoteHMR	-	\checkmark	83.18	61.69

Thank you!

Homepage:

https://caizhongang.github.io/projects/HuMMan/