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3D Human Data Is Expensive to Acquire [

[1]1Y. Rong et al., Delving deep into hybrid annotations for
3d human recovery in the wild, ICCV 2019
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Playing for 3D Human Recovery HuMMan: Multi-Modal 4D Human Dataset for
Versatile Sensing and Modeling

Large-scale Generation of Synthetic Data Large-scale Collection of Real Data




Playing for 3D Human Recovery
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TABLE 1: 3D human dataset comparisons. We compare GTA-Human with existing real datasets with SMPL annotations and synthetic datasets
with highly realistic setups. GTA-Human has competitive scale and diversity. Datasets are divided into three types: real, synthetic and mixed.
GTA-Human samples character action sequences from a large in-game database that allows a unique action to be assigned to each video sequence.
Note that EFT [20] re-annotates 2D human pose estimation datasets where the number of subjects are difficult to trace. *: 3DPW and Panoptic
Studio only have general descriptions of scene activities

Dataset Year Type In-the-Wild ~ Video  #SMPL  #Sequence  #Subject ~ #Action
HumanEva [5] 2009 Real - v NA 7 4 6
Human3.6M [&] 2013 Real - v 312K 839 11 15
MPI-INE-3DHP [21] 2017 Mixed v v 96K 16 8 8
3DPW [6] 2018 Real v v 32K 60 18 ¥
Panoptic Studio [V] 2019 Real - v 736K 480 ~100 *
EFT [20] 2020 Real v - 129K NA Many NA
SMPLy [7] 2020 Real v v 24K 567 742 NA
AGORA [22] 2021  Synthetic v - 173K NA =350 NA
GTA-Human 2022  Synthetic v v 1.4M 20K =600 20K
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Toolchain
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Data Diversity

a) Subjects

b) Locations

(@)
W)
¥ Indoor

¢) Weather

Subjects, Locations, Weathers, and Light Conditions
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Experiments

TABLE 2: GTA-Human’s impact on model performance. The values are reported on 3DPW test set in mm. We employ two strategies: blended
training (BT) that directly mixes GTA-Human data with real data to train an HMR model; finetuing (FT) that finetunes pretrained models with
mixed data. Significant performame improvements are achieved with both settings. Including GTA-Human in the training boosts the HMR [23]
baseline to outperform much more sophisticated methods such as SPIN [24] that leverages in-the-loop optimization (Registration) and VIBE [25]
that utilizes temporal information (Video); State-of-the-art method PARE [26] also benefit from data mixture. We also conduct further experiments
on video-based human recovery with VIBE in Table 3. Mixture: data mixture strategies. Real: real datasets.

Method  Mixture  Registration = Video  Pretrain Train Finetune MPJPE | PA-MPJPE |

HMR - - - ImageNet Real - 112.3 67.5
HMR+ - - - ImageNet Real - 98.5 61.7
SPIN - v - ImageNet Real - 96.9 59.2
VIBE - - v ImageNet Real - 93.5 56.5
PARE - - - ImageNet  Real - 82.0 50.9
HMR BT - - ImageNet  Mixed - 98.7 (-13.6) 60.5 (-7.0)
HMR FT - - HMR - Mixed 91.4 (-20.9) 55.7 (-11.8)
HMR+ BT - - ImageNet  Mixed - 88.7 (-9.8) 56.0 (-5.7)
HMR+ FT - - HMR+ - Mixed 91.3 (-7.2) 55.5 (-6.2)
SPIN FT - - SPIN - Mixed 83.2 (-13.7) 52.0 (-7.2)
PARE FT - - PARE - Mixed 77.5 (-4.5) 46.8 (-4.1)

TABLE 3: Video-based 3D human recovery. The values are reported on

3DPW [6] test set with VIBE as the base model. MI3: MPI-INF-3DHP.

GTA: GTA-Human. PA: PA-MPJPE. Accel: acceleration error (mm/s?). Adding Synthetic data is effective
* downsampled GTA-Human data to match the size of MPI-INF-3DHP

(96K SMPL poses).

« Image-based: 4~10 mm PA-MPJPE improvements

MI3  3DPW GTA-Human MPJPE| PA | Accel |

v - - 95.0 56.5 27.1

- - Ve 93.7 55.0 26.3 . : - . - .

] ¥ ] i Video-based: almost on-par with real data
- - v 91.3 54.1 24.7

- v v 85.2 524 24.2

v v v 86.0 51.9 233
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a) Real Only

b) Blended

¢) Blended + DA

[ ® 3DPW @ Real Indoor @ GTA-Human }

Domain Gap Analysis

TABLE 6: Domain adaptation with equal amount real and synthetic
data. PA: PA-MPJPE.

Method Real GTA-Human PA-MPJPE |
HMR v - 76.7
HMR (1x) - v 65.7
HMR (BT, 1x) v v 58.6
CycleGAN [65] v v 61.6
Chen et al. [70] v v 57.9
JAN [6Y] v v 56.5
Ganin ef al. [71] v v 55.5

Domain Adaption

S-LAB
FOR ADWANCED
INTELLIGENCE
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Experiments

g TABLE 7: Synthetic Data as a Supplement. Different total data amount
g with different real data ratio are shown. Values are PA-MPJPE (mm)
m 60 - _ on 3DPW test set. Synthetic data are sampled from 4x set during
E: . training. N/A: this ratio cannot be sustained beyond 300K data due
S R7.2 to insufficient real data. HMR+ (BT) is used as the base method.
< 56 - T 56.0
- 0 05 1 2 3 H Real Ratio 100K 200K 300K 400K 500K
Multiplies of Real Data 0% 70.6 64.5 65.7 65.0 64.9
25% 62.4 60.9 58.0 57.6 57.3
Fig. 8: Amount of GTA-Human Data. The horizontal axis indicate the 50:/0 61.7 58.9 57.9 56.3 55.6
amount of GTA-Human data used as multiples of the amount of real 75% 0 62.4 58.4 56.8 55.7 N/A
data. HMR+ is used as the base method. 100% 65.8 62.7 61.7 N/A  N/A

Data Scale Matters! Supplementing Synthetic Data to Real Data
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a) Elevation Angle b) Azimuth Angle ¢) Extreme Pose (Distribution Mean)  d) Extreme Pose (T-Pose) e) Occlusion f) Self-occlusion
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Fig. 9: Impact of data scarcity. We show that model performance is sensitive to data scarcity, and this observation is consistent on factors such
as camera angles, poses, and occlusion. For ¢) and d), we follow [/4] to encode pose as a set of 3D coordinates of the 24 key joints, and plot the
distance from the mean pose and T-pose respectively. The data density of e) and f) are in log scale.

Impact of Data Scarcity: Severe Performance Degradation where Data is Scarce
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TABLE 8: Strong supervision is key. The first row is the HMR+
baseline without any GTA-Human data added.

Keypoints SMPL MPJPE | DPA-MDJPE |

98.5 61.7
v - 93.4 60.9
- v 92.0 56.3
v v 88.7 56.0

Strong Supervision is Key

TABLE 9: Big data benefits big models. Real: training with only the
real datasets. +GTA: blended training setting is used with GTA-Human.
Values in green indicate the error reduction in PA-MPJPE (mm) with
blended training.

Backbone #Param Real]| +GTA-Human |

ResNet-50 26M 61.7 56.0 (-5.7)
ResNet-101 45M 60.1 54.5 (-5.6)
ResNet-152 60M 58.4 54.3 (-4.1)
DeiT-Small 22M 66.5 60.7 (-5.8)
DeiT-Base 86M 61.2 56.2 (-5.0)

Big Data Benefits Big Models
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: More modalities
<’y e.g. Point Clouds
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SynBody (Full Set Coming Soon!)
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Large scole of scenes

https://openxdlab.org.cn/details/SynBody oot




That’s all for GTA-Human

GTA-Human MMHuman3D XRMocap

(Homepage) (Perception Toolbox) (Toolchain)



HuMMan: Multi-Modal 4D Human Dataset for
Versatile Sensing and Modeling
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Dataset #Subj #Act #Seq FFrame Video Mobile Modalities
RGB D/PC Act K2D K3D Param Mesh Txtr

UCF101 [55] - 101 13k - v - v - v - - - - -
AVA [20)] - 80 437 - v - Y - - -
FineGym [52] - 530 32k - v - v - v - - - - -
HAABQO [14] - 500 10k 591k v - 's - 's - - - - -
SYSU 3DUOI [26] 40 12 480 - v - A S -
NTU RGB+D [#1] 40 60 b6k - v - v v v - v - - -
NTU RGB+D 120 [54] 106 120 114k - v - v v v - v - - -
NTU RGB+D X [01] 106 120 113k - v - O Y S -
MPILI [3] - 410 - 24k - - v - v v - - - -
COCo [ - } - 104k - - N - - -
PoseTrack [2] - - >1.35k >46k v - v - v - - - -
Human3.6M [25] 11 17 839 3.6M v - v v v oo - - -
CMU Panoptic [1] 8 5 65 154M v - v ' - v v - -
MPI-INF-3DHP [63] 8 8 16 1.3M v - v - - v v - -
3DPW [61] 7 - 60 51k v N - -
AMASS [60] 344 - >11k >16.88M v - - - v v -
AISTH+ [15] 30 - L40k  10.1M v - v - - v Y -
CAPE [19] 15 - >600 >140k v - - - v v v v -
BUFF [105] 6 3 >30  >13.6k v - v v v - v v v v
DFAUST [6] 10 >10 >100  >40k v - N Y N N N
HUMBI [101] 772 - - ~26M v - v - - v v v v v
ZJU LightStage [76] 6 6 9 >1k v - v - v v v v v v
THuman2.0 [99] 200 - - >500 - - - - - - - v v v
HuMMan (ours) 1000 500 400k 60M v v v v o ovov v v v v

A

a) Kinect (ID 0) b) iPhone

.. >N
a) Color Image

Point Cloud

b)

¢) Keypoints d) SMPL e) Mesh f) Texture

The Largest-scale Multi-modal Dataset for Human
Sensing and Modeling

The First Large-scale Multi-modal Dataset Captured
with a Mobile Device
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a) Perspective view
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b) Top view
Hardware Solution
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¢) Sensors

Microsoft
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Artec Eva
High-resolution Scanner

Sensor Suite

iPhone 12 Pro Max
(with LiDAR)

b) iPhone

Visualization

S-LAB
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Data Collection

Artec Eva iPhone RGB iPhone Depth Kinect RGB  Kinect Depth

Scan Accuracy Views Data / second
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Toolchain
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Toolchain
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Shape Registration Depth-Aware Texture

Reconstruction

Parametric Model and Textured Mesh Sequences
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Action Set




Action Set
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(a) Schematic Diagram (Front View)
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(b) Schematic Diagram (Back View)
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Biceps

Extemal oblique

Wrist
muscle

Adductor muscle

+— Soleus muscle

|

(¢) Action Hierarchy Diagram

Hierarchical, Complete and Unambiguous
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Subjects




Subjects

%

e

Gender

Male

Female

39.9%

60.1%

Age (Years)
21.2%

48.5%
283%

18-34
35-49
50-65

Height (¢cm)

0.6%
67% — | 28%

17.3%

22.5%

10.6%

21.2%

18.0%

<155

155-159
160-104
165-169
170-174
175-179
180-184
> 185

Weight (kg)

0.6%
12% —

10.2%

24.7%

32.4%

- 6.1%

24.4%

50-59
60-69
70-79
80-89
90-99
>100

Varieties in Genders, Ages, Body Shapes (Heights, Weights), Ethnicity, and Clothing

NANYANG
TECHNOLOGICAL
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Updates on
HuMMan v1.0
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Reconstruction Subset (Just Released!) — "+ %

'ﬁﬂ‘ 153 Subjects

Realistic Challenges
HuMMan v1.0 .t
Methods Novel Pose Novel View
NHP [1] <18 <18
MPS-NeRF [2] | <18 <18
?[?] ~20 ~20

Generalizable Animatable Avatar from Single Image
(Metric: PSNR)

[1] NHP Neural Human Performer: Learning Generalizable Radiance Fields for Human Performance Rendering
[2] MPS-NeRF: Generalizable 3D Human Rendering from Multiview Images
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Action Understanding Subset (Coming Soon!)

/Lunge Twist Stretch L (ID=11): \

Put your right leg in the front and your
left leg behind. Bend your right knee
about 90 degrees while keep your left
knee straight with left toes on the
ground. Keep your body in the upright
position and tilt to your right.
Straighten your left arm and keep it
close to your left ear. Put your right
hand on the right side of the waist,

with right elbow bent at 90 degrees./
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Perception Subset (Coming Soonl!) El

k- _{-;é‘
3 kg

a) i) HuMMan Color Image a) i) HuMMan SMPL a) iii) HuMMan Point Cloud

N SURREAL
B HuMMan

Count (Log Scale)

10 20 30 40 50
Mean Distance (mm)

¢) i) SURREAL ¢) ii) SURREAL
b) Point Distribution Analysis SMPL Point Cloud

Point Cloud-Based Human Pose and Shape Estimation
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RenBody (Full Set Coming Soon!)

Cam26

Cam25

Cam22 Cam18é Cam10 Cam04

https://openxdlab.org.cn/details/RenBody
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HuMMan GTA-Human MMHuman3D XRMocap

(Homepage) (Homepage) (Perception Toolbox) (Toolchain)
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