Baselines
Model/Method |
AP |
FPR-95 |
IPAA-100 |
IPAA-90 |
IPAA-80 |
Homography |
0.049 |
0.944 |
0 |
0 |
0 |
SIFT |
0.063 |
0.866 |
0 |
0 |
0 |
MatchNet |
0.193 |
0.458 |
0.010 |
0.012 |
0.033 |
MatchNet(ResNet-18) |
0.138 |
0.410 |
0.002 |
0.003 |
0.010 |
DeepCompare |
0.202 |
0.412 |
0.023 |
0.025 |
0.063 |
DeepCompare(ResNet-18) |
0.129 |
0.402 |
0.005 |
0.005 |
0.010 |
DeepDesc |
0.090 |
0.906 |
0.011 |
0.011 |
0.018 |
DeepDesc(ResNet-18) |
0.171 |
0.804 |
0.027 |
0.032 |
0.058 |
TripletNet |
0.467 |
0.206 |
0.168 |
0.220 |
0.376 |
TripletNet+Zoom Out |
0.430 |
0.269 |
0.047 |
0.062 |
0.161 |
ASNet |
0.524 |
0.209 |
0.170 |
0.241 |
0.418 |
ASNet+Epipolar Soft Constraint |
0.577 |
0.157 |
0.219 |
0.306 |
0.499 |
Statistics
Classes |
Cameras |
Setups |
Relative Poses |
Scenes |
Images |
BBoxes |
Instance per Scene |
120 |
9 |
567 |
20,412 |
5,579 |
50,211 |
1,219,240 |
6-73 |
|
Acknowledgements
This research was supported by SenseTime-NTU Collaboration Project, Singapore MOE AcRF
Tier 1 (2018-T1-002-056), NTU SUG, and NTU NAP
|
Total Visitor Count:
     
Unique Visitor Count:
|